

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road, Puttur – 517583

QUESTION BANK

Subject with Code: Engineering Chemistry (19HS0802)Course & Branch: B. Tech (CE, ME& AGE)

Regulation: R19 Year & Sem: I-B.Tech & II-Sem

UNIT-1

WATER TECHNOLOGY

,	[L1][CO1] [6M] [L1][CO1] [6M]
2. Describe the estimation of hardness by EDTA method.	[L6][CO1] [12M]
3. a) How water gets hardness. Distinguish between hard water and soft water?b) Explain in detail about Boiler corrosion.	[L1,L4][CO1] [4M] [L2][CO1] [8M]
4. a) Explain the importance of priming ang foaming?b) Explain sludge and Scale formation in boilers?	[L2][CO1] [6M] [L2][CO1] [6M]
5. Briefly Explain about the boiler troubles and their treatment?	[L2][CO1] [12M]
6. Describe the Zeolite or permutit process for softening of water. what are the advantages and disadvantages of zeolite process.	[L6][CO1] [12M]
7. Describe the Ion exchange process for demineralization of water ?what are the advantages and disadvantages of ion exchange process ?	[L6][CO1] [12M]
8. a) Explain about demineralization of brakish water by Reverse Osmosis . b)Explain about demineralization of brakish water by Electrodialysis.	[L2][CO1] [6M] [L2][CO1] [6M]
9. Explain in detail about the Industrial water treatment .	[L5][CO1] [12M]
10. Explain with a neat sketch the various steps involved in municipal solid waste water	[L5][CO1] [12M]

Treatment.

UNIT-II

ELECTROCHEMISTRY AND APPLICATIONS

1. a) What is Electrochemical cell? Give an example.

[L1][CO2] [7M]

b) Calculate the single electrode potential of zinc in 0.05M ZnSO₄ solution at 25^oC.

$$E^{0}_{Zn/Zn}^{2+} = 0.763V.$$

[L3][CO2] [5M]

- 2. Define Electrode Potential. Derive the Nernst equation for a single electrode potential [L1][CO2][12M] and write its applications.
- 3. a) What is primary Battery? Write a note on Li battery (Primary Cell).

[L1][CO2] [5M]

b) Explain the Construction and working of Lead acid battery.

[L2][CO2] [7M]

4. a) What is secondary Battery? Write a note on Lithium Ion rechargeable cell.

[L1][CO2] [6M]

b) Describe the Construction and Working of Methanol – Oxygen Fuel cell.

[L6][CO2] [6M]

5. What is a Fuel cell? Describe the Construction and Working of Hydrogen – Oxygen Fuel Cell.

[L1][CO2][12M]

6. Discuss in detail about electrochemical or wet corrosion?

[L6] [12M]

7. Define corrosion? Discuss in detail about chemical or dry corrosion.

[L1][CO2] [12M]

8. a) Write a note on sacrificial anodic protection?

[L2][CO2] [6M]

b) Define the importance of the Impressed Current Cathodic protection?

[L1][CO2] [6M]

9. a) What is electroplating? Explain electroplating of Nickel and copper? b) What is Differential Aeration cell corrosion? Give the suitable Examples. [L1,L2][CO2] [6M] [L1][CO2] [6M]

10. Explain various factors influencing the rate of corrosion?

[L2][CO2] [12M]

UNIT-III

POLYMERS AND FUEL CHEMISTRY

1. a) What is functionality of monomer?	[L1][CO3] [5M]
b) Write a note on nomenclature of polymers.	[L2][CO3] [7M]
2. Explain the following mechanism	
a) Free radical addition polymerization.	[L2][CO3] [6M]
b) Cationic addition polymerization.	[L2][CO3] [6M]
3. Explain the following mechanism	
a) Anionic addition polymerization.	[L2][CO3] [6M]
b) Co-ordination or Ziegler-Natta polymerization.	[L2][CO3] [6M]
4. Write the preparation, properties and application of Buna-S rubber,	[[0][CO2] [10M]
Buna-N rubber and Thikol rubber.	[L2][CO3] [12M]
5. a) Distinguish between Thermoplastics and thermosetting plastics.	[L4][CO3] [4M]
b) Describe the preparation, properties and uses of Bakelite.and PVC	[L6][C03] [8M]
c) = control and proposition, proposition and an arrangement of	[][]
6. a) what are the fuels, the classification and examples of the fuels. ? write their units.	[L1][CO3] [8M]
b) Calculate the gross and net calorific values of coal having the following	
composition, Carbon = 85%, Hydrogen = 8%, Sulphur = 1%, nitrogen = 2%	
Ash= 4 %, Latent heat of steam = 587 cal/gm.	[L6][CO3] [4M]
7. Explain the analysis of Coal (Proximate and Ultimate) With its Significance.	[L2][CO3] [12M]
	FF (110001 110) #1
8. Describe the method employed for the refining of petroleum with neat sketch	[L6][CO3] [12M]
0. 2)What are significance of the Fuels for IC Engines	[[1][CO2] [6M]
9. a)What are significance of the Fuels for IC Engines	[L1][CO3] [6M]
b) Write a note on Octane value and Cetane value	[L2][CO3] [6M]
	II 11(002) (2) E
10. a) What is the essential of propane and methanol fuel.	[L1][CO3] [6M]
b) What is the importance of the Ethanol and Bio fuel?	[L1][CO3] [6M]

UNIT-IV **BASIC ENGINEERING MATERIALS**

1. What is meant by composites? Classify the composites materials.

[L1][CO4] [12M]

2. What are Refractories? How are they Classified .Discuss in detailed about properties of Refractories. [L1][CO4] [12M]

3. Define Viscosity? Determine the viscosity of lubricating oil by Redwood Viscometer . [L1,L5][CO4] [12M]

4. Write short notes on:

a) Flash and Fire point [L2][CO4] [6M]

b)Cloud and Pour point [L2][CO4] [6M]

5. Discuss the mechanism of different types of lubrication. [L6][CO4] [12M]

6. Define the lubricants give the classification and examples of the lubricants? [L1][CO4] [12M]

7. Define Cement .Explain in detailed about manufacture of Portland Cement? [L1,L2][CO4] [12M]

8. a) What is cement? How do you classify the cement? [L1][CO4] [6M]

b)Explain in detail about setting and hardening of portland cement? [L2][CO4] [6M]

9. What are the applications of Composite materials? [L1][CO4] [12M]

10.a) Write a note on Fiber reinforced materials. [L2][CO4] [7M]

b) What are the properties of composite material [L1][CO4] [5M]

UNIT-V

SURFACE CHEMISTRY AND APPLICATIONS

1. Write any two methods synthesis of colloids with suitable examples.	[L2][CO5] [12M]
2. What is the significance of the adsorption isotherm	[L1][CO5] [12M]
3.Explain various methods of stabilization of colloids.	[L5][CO5] [12M]
4.a)What is colloid? Classify the colloids based on the physical state.b)Write a note on Micelle formation	[L1][CO5] [6M] [L2][CO5] [6M]
5. Explain principle, instrumentation and applications of Scanning Electron microscopy (SEM)	[L5][CO5] [12M]
6. Discuss the principle, instrumentation and applications of Transmission electron microscopy(TEM) [L6][CO5] [12M]
6. Discuss the principle, instrumentation and applications of Transmission electron microscopy(7. Explain principle, instrumentation and applications X-ray diffraction	TEM) [L6][CO5] [12M] [L5][CO5] [12M]
7. Explain principle, instrumentation and applications X-ray diffraction8. a) Explain the BET Equation	[L5][CO5] [12M] [L2][CO5] [7M]
 7. Explain principle, instrumentation and applications X-ray diffraction 8. a) Explain the BET Equation b) What are the factors influencing Adsorption of gases on solids 	[L5][CO5] [12M] [L2][CO5] [7M] [L1][CO5] [5M]